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Least-squares spectral element methods are based on two important and successful
numerical methods: spectral/hp element methods and least-squares �nite element meth-
ods. In this respect, least-squares spectral element methods are very powerfull since
they combine the generality of �nite element methods with the accuracy of the spec-
tral methods and also the theoretical and computational advantages in the algorithmic
design and implementation of the least-squares methods. The present paper continues
the development of the least-squares spectral element methods by concentrating on the
application of this method to incompressible 
ow problems. Therefore, the derivation
of the least-squares spectral element fomulation of the velocity-vorticity-pressure form of
the unsteady Navier-Stokes equations plays a central role in the present paper. Moreover,
the numerical simulation of the lid driven cavity problem con�rms that the least-squares
spectral element method produces spectrally accurate results.

1. Introduction

S
PECTRAL element methods combine the general-
ity of �nite element methods with the higher order

accuracy of the solution due to the high-order basis-
functions.1 Consequently, since these methods are
often associated with high-order �nite element meth-
ods, they are called hp-�nite element methods.2 In
comparison with �nite element methods, spectral ele-
ment methods need less degrees of freedom to obtain
a prescribed level of accuracy, but the amount of work
per degree of freedom which needs to be done is higher.
Since spectral element methods are a subclass of �-
nite element methods, weak formulations for the spec-
tral element method may be obtained by Galerkin's
method.

Recently, the spectral element discretization of the
incompressible Navier-Stokes equations has received
much attention.2, 3 In the weak formulation, one needs
to de�ne approximating function spaces for the ve-
locity and pressure. However, the velocity and pres-
sure cannot be approximated independently due to the
well known Ladyzhenskaya-Babu�ska-Brezzi compati-
bility condition.4 This condition can be satis�ed by
reducing the polynomial degree for the pressure. A
well known compatible velocity-pressure combination
is the so-called PN�PN�2 formulation of Bernardi and
Mayday.5, 6 Moreover, the resulting discrete system is
derived from a saddle point problem and is diÆcult to
solve numerically. To overcome this, the discrete gov-
erning equations are often decoupled by using projec-
tion methods or generalized block LU-decompositions.

�Delft University of Technology, Department of Aerospace

Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands
yDelft University of Technology, Department of Aerospace

Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands
zCWI, P.O. Box 94079, 1090 GB Amsterdam, The Nether-

lands

For many engineering problems, the least-squares
formulation provides an attractive alternative to the
standard Galerkin formulation. Irrespective of the
type of the underlying partial di�erential equation,
the least-squares formulation always leads to symmet-
ric algebraic systems, which means that only half of
the coeÆcients need to be stored. If, in addition, the
system satis�es an a priori coercivity inequality, the
least-squares formulation generates positive de�nite
algebraic matrices, which allow for the use of well-
established solvers, such as preconditioned Conjugate
Gradient methods. Furthermore, for mixed problems,
such as the incompressible Stokes and Navier-Stokes
equations, compatibility conditions between the var-
ious approximating function spaces can be circum-
vented.4 The method remains symmetric, positive def-
inite for the non-linear Navier-Stokes equations when
a continuation technique with respect to the Reynolds
number is properly implemented.7

Is has been shown4, 8, 9 that it is possible to com-
bine the generality of �nite element methods with
the accuracy of the spectral methods and also the
theoretical and computational advantages in the al-
gorithmic design and implementation of least-squares
methods. Indeed, the least-squares spectral element
method has been developed to achieve this goal. Re-
cent results4, 8, 9 reveal that the least-squares spectral
element method provides the same order of accuracy
as the Galerkin spectral element method. To this end,
a nodal representation based on the Legendre4, 8, 9 or
Chebyshev10 polynomials can be used to expand the
approximate solution. However, the governing equa-
tions must, be transformed into an equivalent �rst
order system to mitigate continuity requirements be-
tween neighbouring �nite elements and to keep the
condition number of the resulting discrete system un-
der control.11
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The present paper deals with the application of the
least-squares spectral element method to incompress-
ible 
ow problems. In Section 2, the least-squares
spectral element method is discussed for an abstract
boundary value problem. In particular, the fully co-
ercive least-squares method with strongly imposed
boundary conditions is treated. Also some practical
aspects are discussed in this section. In Section 3,
the theory is applied to the unsteady Navier-Stokes
equations to obtain the least-squares formulation. The
velocity-vorticity-pressure formulation is used in the
present paper. The numerical results are discussed in
the subsequent section (Section 4). To this end, the
lid driven cavity problem is simulated at a Reynolds
number of 1000 and the results are compared with
the commonly used benchmark results of Botella and
Peyret.12 The last section is devoted to the conclu-
sions.

2. The least-squares formulation

The principle of least-squares methods is �rst dis-
cussed for an abstract boundary value problem with
strongly imposed boundary conditions. An important
aspect in the theoretical analysis of least-squares for-
mulations is to establish the equivalence between the
residual of the di�erential equation in a certain norm
and the error with respect to the exact solution in a
corresponding norm. This equivalence will be elabo-
rated upon in the next section. From the equivalence
between the residual norm and the corresponding error
norm, a priori error estimates can be derived.

Consider the following abstract boundary value
problem

L (U) = F in 
 (1)

R (U) = G on � (2)

in which L is a linear �rst order partial di�erential op-
erator acting on a scalar or a vector U of unknowns;
F is a given vector-valued function; R is a trace op-
erator acting on the functions U and G represents a
given vector-valued function on the boundary. With-
out any loss of generality, one can take G = 0. If
the governing equations involve second or higher or-
der derivatives, the scalar equation or system will �rst
be transformed into a �rst order system.

Fully coercive least-squares methods with
strongly imposed boundary conditions

It is assumed that the system given by (1)-(2) is
well-posed and that the operator L is a continuous
mapping from the underlying Hilbert space X onto a
Hilbert space Y , i.e. there exists a positive constant
M , independent of U , such that for all U 2 X the
mapping L satis�es

kL (U)kY �M kUkX 8U 2 X , (3)

and, additionally, we require that the mapping pos-
sesses a continuous inverse, which can be expressed by

� kUkX � kL (U)kY 8U 2 X , (4)

where � is a positive constant independent of U . The
space X consists of functions which already satisfy the
boundary condition (2) with G = 0. Note that by
virtue of the estimate (3) and (4), the norms kUkX and
kL (U)kY are equivalent. The coercivity relation (4) is
of paramount importance for the minimizing principle
of least-squares methods. To appreciate this, assume
that the function U � Ue is measured by means of
the estimate (4) where Ue 2 X represents the "exact"
solution of the boundary value problem (1)-(2). Since
L is a linear operator, and since Ue represents the exact
solution, the estimate (4) can be recast into

� kU � UekX � kL (U)� FkY ; 8U 2 X . (5)

This inequality leads to the very important observa-
tion that if the norm of the residual of (1) approaches
zero (kL (U)� FkY ! 0), the approximate solution
converges to the exact solution (kU � UekX ! 0).
This is the reason why it makes sense to minimize the
residual L (U) � F in the Y -norm in order to obtain
a good approximate/numerical solution. The unique
minimizer of the quadratic least-squares functional

I(U) =
1

2
kL (U)� Fk

2

Y 8U 2 X , (6)

solves the boundary value problem (1)-(2). The mini-
mization of the quadratic least-squares functional (6)
written as

Seek U 2 X such that I(U) � I(V ), 8V 2 X , (7)

can be obtained by means of the Euler-Lagrange equa-
tion

ÆI(U) = lim
"!0

d

d�
I(U + �V ) = 0; 8V 2 X , (8)

applied to the quadratic least-squares functional (6)
which subsequently results into the following weak for-
mulation

Seek U 2 X such that

B(U; V ) = F (V ); 8V 2 X ,
(9)

where B(U; V ) = (L (U) ;L (V )) and F (V ) =
(F;L (V )). Since B(�; �) is symmetric, continuous and
coercive in X by relation (4) and since F (�) is contin-
uous, the weak formulation (9) has a unique solution
by virtue of the Lax-Milgram lemma.4

The last step in the derivation of the abstract
boundary value problem consists of choosing a suit-
able �nite-dimensional subspace Xh � X which yields
the discrete variational problem

Seek Uh 2 Xh such that

B
�
Uh; V h

�
= F

�
V h

�
; 8V h 2 Xh

(10)
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where the superscript h represents a grid parameter (h
is the mesh spacing for �nite element methods or the
reciprocal of the polynomial degree of spectral meth-
ods). In the present work only conforming spectral
element discretizations are considered.2, 4, 8, 9

Practical aspects

From a practical point of view, only least-squares
formulations which allow for the use of C0-spectral
elements are usable. Since C0-�nite or spectral el-
ement methods are based on piecewise continuously
di�erentiable polynomials, standard �nite and spectral
elements can be used which results in a very practical
method from an implementational point of view. This
can be accomplished by �rst transforming the system
into a �rst order system and subsequently requiring
that only (scaled) L2-norms are used in the quadratic
least-squares functional. The transformation into a
�rst order system has two important consequences.
First of all, the continuity requirements between neigh-
boring spectral elements will be mitigated such that
C0-�nite or spectral elements can be used (in case the
residuals are measured by L2-norms). Secondly, the
transformation will keep the condition number of the
resulting discrete system under control.13

3. The least-squares formulation of the

unsteady Navier-Stokes equations

For unsteady incompressible 
ows with constant
dynamic viscosity, the governing equations are the
Navier-Stokes equations. These equations are char-
acterized by the fact that the momentum equations
(e.g. equations (11)) are coupled to an incompressibil-
ity constraint which states that the velocity vector �eld
is divergence free, (e.g. equation (12)). In terms of the
primitive variables (u; p) the governing equations read

@u

@t
+ (u � r)u = �rp+ ��u+ f in 
 ; (11)

r � u = 0 in 
 ; (12)

where u represents the velocity vector, p the kinematic
pressure, f the forcing term per unit mass (if applica-
ble) and � the kinematic viscosity. In the present pa-
per, the Navier-Stokes equations (11)-(12) are solved
with velocity boundary conditions only.

The importance of the a priori estimate for the �rst

order least-squares formulation has been discussed in
the previous section. As discussed above, one must
transform the Navier-Stokes equations equation (11)-
(12) into an equivalent �rst order system. Five dif-
ferent �rst order formulations of the Stokes equations
have been assessed in the context of the least-squares
spectral element method in the dissertation of Proot.4

This discussion revealed that the velocity-vorticity-
pressure formulation is a good compromise between
accuracy and practicality. Indeed, this formulation
recovers full accuracy for all the variables with some
boundary conditions and the formulation can be sup-
plemented with a number of non-standard boundary
conditions that are easy to impose in a strong sense.
Moreover, numerical experience with least-squares �-

nite element methods based on this formulation13{24

revealed that the method remained suÆciently accu-
rate even when it was not fully optimal. With these
considerations in mind, it has been decided to develop
a least-squares spectral element method based on the
velocity-vorticity-pressure formulation.

A thorough discussion on the function spaces to be
used in combination with various types of boundary
conditions can be found in the work of Proot & Ger-
ritsma.9

The �rst order formulation of the Navier-Stokes
equations

In order to obtain the velocity-vorticity-pressure for-
mulation of the unsteady Navier-Stokes equations, the
vorticity ! has been introduced as an auxiliary vari-
able. By using the identityr�r�u = ��u+r(r�u)
and by using the incompressibility constraintr�u = 0,
the governing equations subsequently read

@u

@t
+ u � ru+r~p+ �r� ! = f in 
; (13)

! �r� u = 0 in 
; (14)

r � u = 0 in 
; (15)

where, in the particular case of the two-dimensional
problem, uT = [u1; u2] represents the velocity vector
and f

T = [f1; f2] the forcing term per unit mass (if
applicable) and � the kinematic viscosity.
The generalized kinematic pressure ~p is related to

the kinematic pressure p by

~p = p�r � u : (16)

On the continuous level, due to (15) both pressures
coincide, but at the discrete level ~p may di�ere from
p.

Time integration

The time-integration method that has been used is
the �-scheme. Applying this integration scheme to the
model equation

@u

@t
= F (u; x; t) ; (17)

results into:

u� u0

�t
= �F+ (1� �)F0: (18)
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In the latter equation, the subscript \0" indicates that
the value of the corresponding variable is known from
the previous time step. Consequently, the variable �t
is nothing else than �t = t � t0. All computation
are initiated by solving the Stokes problem at the �rst
iteration step.

By varying the parameter �, di�erent temporal ac-
curacies can be obtained. By taking � = 1, the time
integration reduces to backward Euler which is �rst
order O(�t) accurate in time. Setting � = 0 gen-
erates the explicit, �rst order forward Euler method,
which due to the orthogonality of the basis functions
leads to a diagonal matrix. The second order O(�t2)
time integration scheme of Crank-Nicolson can be ob-
tained by selecting � = 1=2. Since the Crank-Nicolson
scheme (� = 1=2) has no damping, small round-o� er-
rors persist in the �nal solution. Therefore, one often
takes � = 1=2+O(�t). With this choice, the temporal
accuracy remains second order. Moreover, numerical
evidence revealed that adding the small factor of or-
der �t e�ectively damps the small waves in spectral
element simulations.

Since the �-scheme is unconditinally stable with the
choice 1=2 � � � 1, one often uses the backward Euler
scheme (� = 1) in combination with a large time step
to obtain steady state solutions. In order to obtain
time-accurate solutions, the backward Euler scheme
is not appropriate since it would require prohivitive
small times steps and introduces �rst order arti�cial
di�usion in the discrete system. Therefore, one re-
sorts to second order (or higher) formulations. As
stated above, a preferred choice for the parameter �
then becomes � = 1=2 +O(�t).

Linearization of the non-linear terms

Before the least-squares principles can be applied
and the corresponding weak form discretized with
spectral elements, the convective term u � ru must
be linearized. To this end, one can use a Picard (e.g.
successive substitution)

u � ru � u0 � ru; (19)

or a Newton linearization

u � ru � u0 � ru+ u � ru0 � u0 � ru0: (20)

In the latter two equations, the subscript \0" indicates
that the value of the corresponding variable is known
from the previous iteration step.

Although Newton linearization converges faster, Pi-
card performs better in the presence of large gradients
as will be the case for the lid-driven cavity 
ow dis-
cussed hereafter. So the following linearized momen-

Fig. 1 The problem setup for the lid driven cavity
problem.

tum equation is obtained:

u� u0

�t
+ � (u0 � ru+rp+ �r� ! � f) =

(� � 1) (u0 � ru0 +rp0 + �r� !0 � f0)
(21)

The least-squares formulation now becomes: Find
u; p; ! 2 H1(
) which minimizes the functional in the
absense of body forces

I(u; p; !) = kr � uk
2

0 + k! �r� uk
2

0 +


u�u0

�t
+ � (u0 � ru+rp+ �r� !) �

(� � 1) (u0 � ru0 +rp0 + �r� !0)k
2

0 :

(22)

Variational analysis with respect to the four un-
knowns u, p and ! in (22) leads to the symmatric
positive de�nite system (9). In the present work,
system (9) is discretized with conforming spectral el-
ements. To this end, a nodal representation based on
the Legendre polynomials has been used to expand the
approximate solution4, 8, 9 .

4. The lid driven cavity test case

For several years, the lid-driven cavity 
ow is consid-
ered as one of the classical test cases for the assessment
of numerical methods and the validation of incom-
pressible Navier-Stokes codes. The lid driven cavity
test case deals with a 
ow in a square box ([0; 1]�[0; 1])
for which the velocity is zero on three of the sides and is
tangent to the fourth side with a constant value equal
to 1 (see Figure 1). Because of the discontinuity of
the velocity at the two upper corners, the solution of
the Navier-Stokes equations becomes singular at these
corners. In particular, the vorticity and pressure be-
come in�nite. The presence of the sharp gradients
of the variables and the singularities at these corners
make the lid driven cavity 
ow a diÆcult test case.
This is particularly true for high-order methods since
the sharp gradients might render the computational
method unstable whereas low order methods tend to
smooth these steep gradients.

In spite of these diÆculties and of its physically un-
realistic character due to the discontinuous velocity,
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the lid driven cavity 
ow is widely used for evaluating
incompressible 
ow solvers. As a result, a large part of
the computations of this test case are motivated by the
validation of a novel method rather than to obtain a
physical insight in this 
ow problem. Recently, Botella
and Peyret12 performed a very accurate simulation of
the cavity 
ow in order to produce new benchmark
results. To obtain these accurate benchmark results,
Botella and Peyret12 used a Chebyshev collocation
method (with varying polynomial order from 128 to
160) to calculate a suÆciently smooth solution by re-
moving the leading part of the singularity from the
solution. The latter is determined from an asymptotic
expansion of the solution of the Navier-Stokes equa-
tions in the vicinity of the corners, by taking the �rst
terms of the expansion into account. Such a technique
has already been used in association with Chebyshev
methods for the Stokes25 and Navier-Stokes equations
at relatively small values of the Reynolds number.26

Since the results of Botella and Peyret12 are the most
accurate benchmark results for the lid driven cavity

ow, they are also used in the present study.

The simulations are performed at a Reynolds num-
ber of 1000, based on the length of the cavity and
the speed of the moving lid. This Reynolds number
is the standard benchmark test case and it is known
that for this Reynolds number a steady solution ex-
ists. The velocity boundary conditions are indicated
in Figure 1. The arbitrary pressure constant is set to
zero at the point (0:5; 0). The geometry has been dis-
cretized with a grid consisting of 64 spectral elements.
The order of the spectral elements used for the numer-
ical simulations is N = 4 and N = 8 (see Figure 2).
No regularization of the corner singularities has been
applied, which makes this tes problem a severe test
problem for higher order schemes.

The backward Euler integration scheme has been
used. Moreover, it has been assumed that a steady
state solution is obtained if the L2-error of the dif-
ference between two successive iterations, which is
de�ned in equation (23), has decreased �ve orders of
magnitude. This error is de�ned in the following way:

L2-error = ku� u0k (23)

where u and u0 represent the value of the unknown
variable and its value that is known from the previous
time level, respectively.

Numerical results

The results of the lid driven cavity problem, ob-
tained at Re = 1000 with the Picard linearization,
are shown in Figures 3 to 6. As was discussed above,
typical for this benchmark problem are the vorticity
and pressure singularities near the upper corners of
the cavity. To illustrate this, the contour plot of the
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a) The cavity grid of order N = 4
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b) The cavity grid of order N = 8

Fig. 2 The spectral element grids of order N = 4

and N = 8 used for the lid driven cavity problem.

vorticity and pressure are shown in Figure 3a and 3b,
respectively. In these �gures, one can clearly observe
the large vorticity gradients at the upper corners of the
cavity. Similarly, one can also observe, in Figure 3b,
the low and high pressure region near the right and
left corner of the cavity, respectively. The streamline
pattern of the 
ow can be found in Figure 3c. Typical
for the cavity benchmark problem, at this Reynolds
number, are the two recirculating regions in the lower
corners. All the results, depicted in Figure 3 are ob-
tained with the least-squares spectral element method
by using the spectral elements of order N = 8.

In order to further assess the quality of the least-
squares formulation, a horizontal (y = 0:5) and verti-
cal (x = 0:5) cut has been made and the velocity com-
ponents, vorticity and pressure values are compared
with the benchmark results of Botella and Peyret.12

The results, obtained at the di�erent cross-sections,
are shown in Figures 4 to 6. In these �gures, the
solid and dotted line represent the least-squares spec-
tral element solution obtained at a polynomial degree
of N = 8 and N = 4, respectively. The square symbols
denote the benchmark results.

The results of the vertical cut are shown in Figure 4.
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c) The streamline pattern

Fig. 3 The streamline, iso-vorticity and iso-pressure patterns inside the cavity. The results are obtained
by using the least-squares spectral element method of order N = 8 at Re = 1000.

The results are extracted from the two computations
along the vertical line located at x = 0:5. Figure 4a
depicts the velocity component in x�direction along
this vertical cut. Visual inspection reveals that the
numerical solution obtained with the polynomial de-
gree N = 8 is much better than the results obtained
with the polynomial degree N = 4. The result ob-
tained with the lowest polynomial degree only reveals
the trend of the simulation but it is clear that the grid
and polynomial degree are too coarse to capture the
full details of the lid driven cavity problem.

Visual inspection suggests that the results obtained
with the spectral elements of order N = 8 are located
on top of the benchmark results. Analyzing these re-
sults in more detail reveals that the simulation with
the highest polynomial degree N = 8 has a relative
error with respect to the benchmark results of approx-
imately 5%. Note that the least-squares simulation
was done on a computational grid consisting of approx-

imately (8 � 9)2 GLL collocation points, whereas the
benchmark results are obtained on a computational
grid consisting of approximately (160)2 Chebyshev-
Gauss-Lobatto collocation points. Hence, with only
a �fth of the number of collocation points, it is possi-
ble to approximate the solution with an absolute error
of the order of 10�3. As suggested in Figure 4a, the
absolute and relative errors will be higher for the simu-
lation with the polynomial degree ofN = 4. Moreover,
the relative and absolute error are approximately 25%
(with a maximum of 55%) and the order of 10�2 to
10�3, respectively. Similar observations can be drawn
regarding the vorticity (Figure 4b). Moreover, investi-
gating the relative and absolute errors reveals that the
most accurate simulation, obtained with the eighth or-
der spectral elements, results in a relative error for the
vorticity of approximately 5% and an absolute error of
the order of 10�2 to 10�3. The results obtained at the
polynomial order of N = 4 are not suÆciently accu-
rate since a relative error of approximately 15% (with
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a) The velocity component in x�direction at x = 0:5
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b) The vorticity at x = 0:5
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c) The pressure at x = 0:5

Fig. 4 The comparison between the benchmark
results (at x = 0:5) of Botella and Peyret12 and
the results obtained with the least-squares spectral
element method at Re = 1000.

a maximum of 55%) has been found. An absolute er-
ror of the order of 10�1 has been found for the latter
simulation. The results for the pressure are shown in
Figure 4c. The large di�erence between the simula-
tion obtained at polynomial degree N = 4 and N = 8
can be clearly observed in this �gure. The simulation
obtained at a polynomial degree N = 4 largely over-
predicts the value of the pressure near the solid walls
(e.g. at y = 0 and y = 1). Consequently, a relative
error ranging from �25% to �55% has been found.
Since the pressure constant was not known a priori,
the pressure-level of both least-squares spectral ele-
ment formulations has been adjusted afterwards such
that the pressure equals zero at the center of the cavity.
This is the point x = 0:5 and y = 0:5. For this reason,
the pressure of both simulations equals the benchmark
pressure at the location y = 0:5. The numerical sim-
ulation at N = 8 yields better results since a relative
error of �7% has been found. The absolute error was
of the order of 10�3 to 10�4.

The results for the horizontal cross-section are
shown in Figure 5. The results are extracted from the
two computations (N = 4 and N = 8) along the hor-
izontal line located at y = 0:5. In Figures 5a and 5b,
the velocity component in y�direction and the vortic-
ity are shown along this horizontal cut, respectively.
In these �gures one can observe that the results of
the simulation obtained at N = 8 are better than
the results obtained at N = 4. Moreover, the com-
parison with the benchmark results indicates that a
better agreement is found for the data inferred from
the horizontal cut than from the vertical cut since the
relative error for the velocity and vorticity, obtained
at N = 8, is now approximately 3% and 1%. The
relative errors for the velocity and vorticity, obtained
at the polynomial degree N = 4, are approximately
15% (with maximum of 45%) and 5% (with maximum
of 9%), respectively. These large relative errors con-
�rm the idea that the polynomial degree N = 4 is not
suÆcient on the present spectral element grid to ob-
tain accurate results. The results obtained at N = 4
only give an indication of the behavior but miss some
of the essential details. Similar to the pressure, ex-
tracted from the vertical cut (Figure 4c), one can also
observe that the pressure extracted from the horizon-
tal cut (Figure 5c) shows a large di�erence between the
two numerical simulations. The simulation at N = 8
performs much better than the simulation obtained at
N = 4. The numerical results obtained at the polyno-
mial degree of N = 8 show a good agreement in the
region near the middle of the cavity and a slight over-
prediction of the pressure near the solid walls. Indeed
a relative and absolute error of approximately 4% and
of the order of 10�3 has been found for the N = 8
simulation, whereas the N = 4 simulation displays a
relative error of approximately 35% and an absolute
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Fig. 5 The comparison of the vorticity between
the benchmark results (at y = 0:5) of Botella and
Peyret12 and the results obtained with the least-
squares spectral element method at Re = 1000.

error of the order of 10�2. It is clear from Figure 5c
that the simulation, performed with the fourth order
spectral elements, overpredicts the pressure along the
whole vertical cut.

The practical applicability of the least-squares
method has been further assessed by investigating the
vorticity along the moving lid (e.g. at y = 1) and at
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a) The vorticity at the moving lid

X
ω

0.2 0.4 0.6 0.8

20

40

60

b) A close-up of the vorticity at the moving lid

Fig. 6 The comparison between the results (at y =
1) of Botella and Peyret12 and the results obtained
with the least-squares spectral element method at
Re = 1000.

the secondary vortices. The results along the mov-
ing lid are shown in Figure 6. Figure 6a displays the
numerical results obtained for the two polynomial de-
grees. Due to the scale of this �gure, one might get the
impression that both simulations yield good results.
However, scrutinizing these results (see Figure 6b) re-
veals that only the numerical results obtained with the
high polynomial approximation order N = 8 show a
good agreement since the relative error is below 2%
and the absolute error is of the order of 10�1 to 10�3.

The results for the secondary vortices are listed in
Table 1. The location of the lower left and lower
right secondary vortex can be found in the second
and third column of this table. The columns four
and �ve list the vorticity at the corresponding location
obtained with the polynomial degree of N = 4 and
N = 8, respectively. In the last column, the bench-
mark results of12 can be found. These latter results
are obtained with a polynomial degree of N = 160.
In Table 1, one immediately observes the large dif-
ference between the benchmark results (column six)
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Vortex x y ! ! !ref
Location (N = 4) (N = 8) (N = 160)

Lower left 0.1360 0.1118 -0.973271 -1.102420 -1.109789
Lower right 0.9167 0.0781 -0.275997 -0.350858 -0.3522861

Table 1 The intensities of the lower left and right secondary vortices at Re = 1000. The results are
obtained with the least-squares spectral element method (with the polynomial degree of N = 4 and N = 8)
and compared with the benchmark results of12

and results obtained with the least-squares spectral
element method at N = 4 (column four). At this poly-
nomial degree, the relative error of the vorticity in the
lower left and right vortex is approximately 12% and
21%, respectively. These large relative errors con�rm
that the polynomial degree N = 4 is not suÆcient on
the present spectral element grid to obtain accurate
results. The numerical results obtained at the poly-
nomial degree of N = 8 show an excellent agreement.
Indeed, the relative error of the vorticity in the lower
left and right secondary vortex is 0:7% and 0:4%, re-
spectively. The absolute error is of the order of 10�3.

5. Conclusions

In the present paper, a least-squares spectral ele-
ment method for the unsteady Navier-Stokes equations
has been discussed. Least-squares spectral element
methods are based on two important and successful
numerical methods being spectral/hp element meth-
ods and least-squares �nite element methods. In this
respect, least-squares spectral element methods seem
the best of all worlds since they combine the general-
ity of �nite element methods with the accuracy of the
spectral methods and also the theoretical and com-
putational advantages in the algorithmic design and
implementation of the least-squares methods. Most
notably, least-squares methods lead to symmetric and
positive de�nite algebraic systems which circumvent
the Ladyzhenskaya-Brezzi-Babu�ska stability condition
and subsequently allow the use equal order interpola-
tion polynomials for all the variables.

The present paper continues the development of
the least-squares spectral element methods by con-
centrating on the application of this method to in-
compressible 
ow problems. Consequently, the deriva-
tion of the least-squares spectral element fomulation
of the velocity-vorticity-pressure form of the unsteady
Navier-Stokes equations has been discussed in detail
in the present paper. Furthermore, the discretization
of the non-linear terms and the time-derivative have
also been elaborated upon.

Numerical simulations of the lid driven cavity prob-
lem have been performed to asses the quality of the
new method. The comparison between the bench-
mark results (obtained at a Reynolds number of 1000)
and the numerical simulation, obtained with the eight

order spectral elements, revealed a very good agree-
ment (the relative error and absolute error were of
the order of �5% and 10�2 to 10�3, respectively).
However, these results were obtained with only one
�fth of the number of collocation points that were
used for the benchmark simulations and no regulariza-
tion techniques were employed to achieve the results.
This con�rms that the least-squares spectral element
method, despite its high order, produces globally and
locally high order accurate results, even in the pres-
ence of singularities. Using a �ner spectral element
grid and/or increasing the order of the spectral ele-
ments will further improve the numerical solution. The
main advantage of the least-squares spectral element
method compared to its Galerkin counterpart is that
the algebraic systems remain symmetric positive def-
inite. This holds even for the least-squares spectral
element discretization of the Navier-Stokes equations.
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